

AOZ8811-03

Ultra-Low Capacitance One-line TVS Diode

General Description

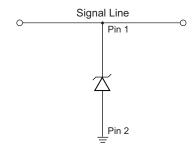
The AOZ8811-03 is a ultra-low capacitance one-line transient voltage suppressor diode designed to protect very high-speed data lines and voltage sensitive electronics from high transient conditions and ESD.

This device incorporates one TVS diode in an ultra-small DFN 1.0 x 0.6 package. During transient conditions, the ultra-low capacitance one-line TVS diode directs the transient to ground. It may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (\pm 15kV air, \pm 15kV contact discharge).

The AOZ8811-03 comes in an RoHS compliant DFN package and is rated over a -40°C to +85°C ambient temperature range.

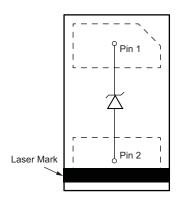
The ultra-small DFN $1.0 \times 0.6 \times 0.4$ mm package makes it ideal for applications where PCB space is a premium. The small size and high ESD protection makes it ideal for protecting voltage sensitive electronics from high transient conditions and ESD.

Features


- ESD protection for high-speed data lines:
 - Exceeds: IEC 61000-4-2 (ESD) ±20V (air), ±20kV (contact)
 - Human Body Model (HBM) ±15kV
- Small package saves board space
- Ultra-low capacitance: 0.5pF
- Low clamping voltage
- Low operating voltage: 3.6V
- Green product

Applications

- Portable handheld devices
- Keypads, data lines, buttons
- Notebook computers
- Digital Cameras
- Portable GPS
- MP3 players



Typical Application

Unidirection Protection of Single Line

Pin Configuration

Ordering Information

Part Number	r Ambient Temperature Range Package		Environmental			
AOZ8811DT-03	-40°C to +85°C	DFN 1.0 x 0.6	RoHS Compliant Green Product			

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant. Please visit www.aosmd.com/media/AOSGreenPolicy.pdf for additional information.

Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage the device.

Parameter	Rating
VP – VN	3.6V
Peak Pulse Current (I_{PP}), t_P = 8/20 μ s	6A
Peak Pulse Power (P _{PP}), t _P = 8/20µs	40W
Storage Temperature (T _S)	-65°C to +150°C
ESD Rating per IEC61000-4-2, Contact ⁽¹⁾	±20kV
ESD Rating per IEC61000-4-2, Air ⁽¹⁾	±20kV
ESD Rating per Human Body Model ⁽²⁾	±15kV

- 1. IEC 61000-4-2 discharge with $C_{Discharge}$ = 150pF, $R_{Discharge}$ = 330 Ω . 2. Human Body Discharge per MIL-STD-883, Method 3015 $C_{Discharge}$ = 100pF, $R_{Discharge}$ = 1.5k Ω .

Maximum Operating Ratings

Parameter	Rating
Junction Temperature (T _J)	-40°C to +125°C

Rev. 1.0 August 2014 www.aosmd.com Page 2 of 7

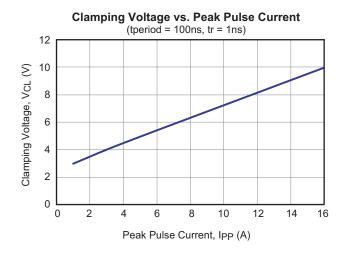
Electrical Characteristics

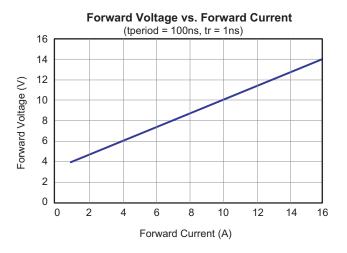
T_A = 25°C unless otherwise specified.

Symbol	Parameter	Diagram
I _{PP}	Maximum Reverse Peak Pulse Current (IEC61000-4-5 8/20µs pulse) ⁽³⁾	I
V _{CL}	Clamping Voltage @ I _{PP} ⁽³⁾	
V _{RWM}	Working Peak Reverse Voltage	
I _R	Maximum Reverse Leakage Current	
V _{BR}	Breakdown Voltage	V _{CL} V _{BR} V _{RWM}
I _T	Test Current	IR VF
I _F	Forward Current	
V _F	Forward Voltage] /
CJ	Capacitance @ V _R = 0 and f = 1MHz	Ipp

Electrical Characteristics

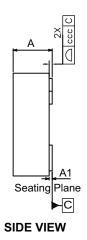
 T_A = 25°C unless otherwise noted, V_F = 1V Max. @ I_F = 10mA for all types

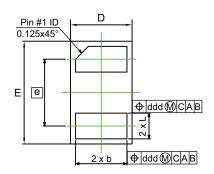

	Device	V _{RWM} (V)	V _{BR} (V)		V= (V)	V _{CL} Max.			C _J (pF)		
Device	Marking	Max.	Min.	Max.	Max.			I _{PP} = 4A	I _{PP} = 6A	Тур.	Max.
AOZ8811DT-03	6	3.6	4.0	10.0	0.1	0.75	2.5	5.0	7.0	0.5	8.0


Note:

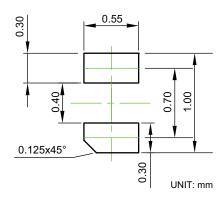
3. These specifications are guaranteed by design and characterization.

Typical Performance Characteristics





Rev. 1.0 August 2014 **www.aosmd.com** Page 4 of 7


Package Dimensions, DFN 1.0 x 0.6

BOTTOM VIEW

RECOMMENDED LAND PATTERN

Dimensions in millimeters

Min.

0.31 0.00

0.45

0.55

0.95

0.20

Symbols

Α

Α1 b

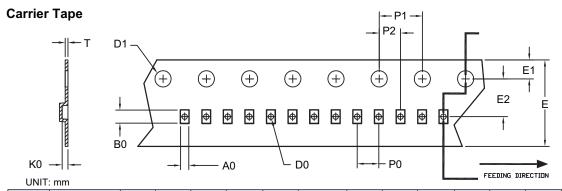
D

Ε

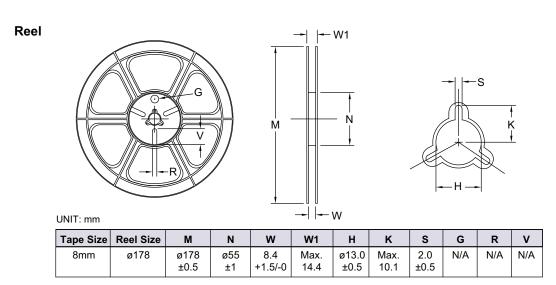
е L

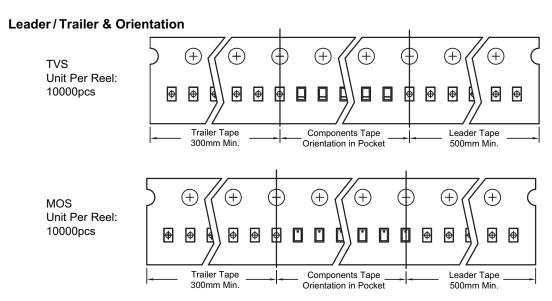
CCC

ddd

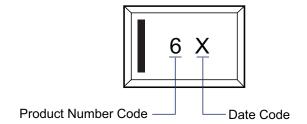

n	millim	neters	Dimensions in inches							
	Nom.	Max.	Symbols	Min.	Nom.	Max.				
	0.38	0.40	Α	0.012	0.015	0.016				
	0.02	0.05	A1	0.000	0.001	0.002				
	0.50	0.55	b	0.018	0.020	0.022				
	0.60	0.65	D	0.022	0.024	0.026				
	1.00	1.05	E	0.037	0.039	0.041				
(0.65 BSC	;	е	e 0.026 BSC						
	0.25	0.30	L	0.008 0.010		0.012				
0.03			CCC	0.001						
	0.10		ddd		0.004					

Notes:


- 1. All dimensions are in millimeters, angles are in degrees.
- 2. Coplanarity applies to the exposed heat sink slug as well as the terminals.



Tape and Reel Dimensions, DFN 1.0 x 0.6


Option	Package	A0	В0	K0	D0	D1	E	E1	E2	P0	P1	P2	Т
А	DFN 1.0x0.6/ DFN 1.0x0.6A (8 mm)	0.69 ±0.05	1.19 ±0.05	0.66 ±0.05	0.40 ±0.05	1.50 ±0.10	8.00 +0.3/-0.1	1.75 ±0.10	3.50 ±0.05	2.00 ±0.05	4.00 ±0.10	2.00 ±0.05	0.23 ±0.02
В	DFN 1.0x0.6/ DFN 1.0x0.6A (8 mm)	0.65 ±0.04	1.05 ±0.04	0.61 ±0.04	0.40 ±0.05	1.50 ±0.10	8.00 +0.3/-0.1	1.75 ±0.10	3.50 ±0.05	2.00 ±0.10	4.00 ±0.10	2.00 ±0.05	0.20 ±0.05

Part Marking

LEGAL DISCLAIMER

Alpha and Omega Semiconductor makes no representations or warranties with respect to the accuracy or completeness of the information provided herein and takes no liabilities for the consequences of use of such information or any product described herein. Alpha and Omega Semiconductor reserves the right to make changes to such information at any time without further notice. This document does not constitute the grant of any intellectual property rights or representation of non-infringement of any third party's intellectual property rights.

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Rev. 1.0 August 2014 www.aosmd.com Page 7 of 7