

www.latticesemi.com

1

ip1039_01.0

April 2005 IP Data Sheet

© 2005 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
The product described herein is subject to continuing development, and applicable specifications and information are subject to change without notice. Such specifica-
tions and information are provided in good faith; actual performance is not guaranteed, as it is dependent on many factors, including the user's system design.

Correlator IP Core

Features

■

Supports 1- to 8-Bit Input Data Width

■

Supports 1 to 256 Channels

■

Supports a Correlation Window from 8 to
2048 Taps

■

Supports Oversampled Input Data from 2x
to 8x

■

Supports Real Correlations for Either
Signed or Unsigned Data

■

Supports Complex Correlations for Signed
Data

■

Allows the User to Tune the Performance of
the Design by Specifying the Values of
Several Parameters

■

Provides a Selectable Input FIFO for
Maximum Data Throughput

■

Allows the User to Specify the Number of
Coefficient Sequences Desired, from 1 to
256

Introduction

The function of this core is to correlate an incoming data
stream to a stored binary pattern called a code
sequence or coefficient sequence. The data stream
may be binary or multi-valued, either signed or
unsigned, and is provided to the core one sample at a
time. The core can be configured to perform either a
real correlation with a single data input stream and a
single coefficient sequence, or a complex correlation
with two input data streams representing the real and
imaginary input terms, and two coefficient sequences
representing the real and imaginary coefficients.

The core provides multiple channel capability and can
support up to 256 channels. Correlations for each chan-
nel operate independently from each other. Also, up to
256 different coefficient sequences may be stored in the
core, and each channel can select which coefficient
sequence is correlated to that channel, so one coeffi-
cient sequence could be used for all 256 channels if
desired.

Figure 1. Correlator IP Core External Interface Diagram

decim_r[n:0]

Correlator

rst

clk

din[n:0]

din_im[n:0]

numtaps_r[n:0]

code_sel_in[n:0]

coeffaddr[n:0]

crdy

coeffwdat[n:0]

coeffwdat_im[n:0]

coeffwr

ordy
chan_in[n:0]

dout[n:0]

chan_out[n:0]

block_start_out

dout_im[n:0]block_start_in

irdy

seq_err

Lattice Semiconductor Correlator IP Core

2

General Description

A correlation function determines how closely a data sequence matches a reference, or “coefficient” sequence. A
high correlation value means that the data sequence closely matches the coefficient sequence. A low correlation
value means that the data sequence is dissimilar to the coefficient sequence. The basic correlator equation is given
by:

(1)

The terms of the equation are:

•

d

i

 – Input data sequence. The Correlator IP core allows the input sequence to be from 1 to 8 bits wide, and either
signed (two’s complement) or unsigned data.

•

c

i

 – Coefficient (or code) sequence. In the Correlator IP core, this sequence must be loaded into internal memory
prior to a correlation operation. This sequence is always binary {1,0}; however, the coefficient sequence may rep-
resent either an unsigned sequence {1,0} or a signed sequence {+1,-1}. In the case of a signed coefficient
sequence, a 1 in the sequence represents a value of +1 and a 0 in the sequence represents a value of -1. The d

i

and c

i

 inputs must both be of the same type, either signed or unsigned.

•

r

k

 – Correlation result output sequence (correlation between d

i

 and c

i

 inputs).

•

corr_win

 – Correlation window. This is the number of elements in the input data sequence over which the corre-
lation function is calculated. This is also referred to as the number of “taps.” For the Correlator IP core this num-
ber is determined by the user when configuring the core. Once selected, the number of data elements (and
coefficient terms) is then fixed at this number for all correlation operations. The number of terms in the coefficient
sequence is always equal to the number of taps (corr_win) specified.

•

num_lags

 – Total number of lags for which the correlation is performed. This is also the length of the correlation
result sequence, r

k.

From Equation 1, a correlation operation takes an input data sequence d

i

 of length “corr_win” and multiplies each
term in the sequence against the terms of the reference coefficient sequence c

i

, summing the results of all of the
multiplications to produce the result r

k

. The input data sequence is then shifted by one element and the operation is
repeated to produce the next term in the r

k

 sequence. This is done “num_lags” times.

In the Correlator IP core, each time a new data term is input to the core, one correlation operation is performed
across “corr_win” data and coefficient terms, producing one result, r. The “k” index in Equation 1 does not apply
since the Correlator always produces one new result when it receives one new data value. Old data beyond the
defined correlation window size is not held in memory.

In addition to the basic correlation function described above, the Correlator IP core can be configured to perform
complex correlations, defined by the equation:

(2)

In this case, the data and coefficient input sequences are both complex and each contains a real input sequence
and an imaginary input sequence. For the Correlator IP core, the input data sequence is a sequence of signed
(two’s complement) numbers from 1 to 8 bits wide, and the coefficient sequence is a binary sequence where a
coefficient value of 1 represents +1 and a coefficient value of 0 represents a -1. Equation 2 represents the complex
conjugate of c

i

. The complex conjugate multiplication expressed in Equation 2 is given as:

(3)

=

+=
1_

0

wincorr

i

ikik cdr k = 0,1,…,num_lags-1

=

+=
1_

0

wincorr

i

ikik cdr k = 0,1,…,num_lags-1

dc = (dre cre + dim cim) + j(dim cre - dre cim)

Lattice Semiconductor Correlator IP Core

3

Since the coefficients in a complex correlation are restricted to the values {+1,-1}, the multiplications in Equation 3
simplify to inversions of the d

re

 and d

im

 terms, and the whole equation reduces to a series of additions and subtrac-
tions. The Correlator IP core performs these inversions and sums the results to produce a new result value r for
each new d

re

 and d

im

 term input to the core. In this case, the result sequence will have two terms, a real term and
an imaginary term.

Functional Description

The Correlator IP core is composed of the following functional blocks:

•

State Machine

 – Controls the flow of data received from the user. Generates the starting pointer values neces-
sary to read/write the Tap Memory and stores the pointer values in the Channel Memory. Stores the starting
pointer values for the next correlation operation in the input FIFO. Generates the “shiftby” value for the aligner.

•

Channel Memory

 – Stores the pointer to the location in Tap Memory to write the next data value.

•

Input FIFO

 – Stores the pointer to the starting point in Tap and Coefficient Memories for the next correlation.

•

Tap Memory

 – Stores the data terms (d

i

).

•

Coefficient Memory

 – Stores the coefficient terms (c

i

).

•

Aligner

 – Aligns data and coefficients read from memory for the correlation operation.

•

Correlator

 – Performs the equivalent of the multiplication operations in Equations 1 and 2.

•

Adder/Accumulator

 – Performs the addition and subtraction operations in Equations 1 and 2.

Correlator Input and Output Data

The Correlator IP core accepts a new input data value for a channel and writes that value into Tap Memory. When it
is ready to perform the next correlation operation for that channel, the new data value will be included in the corre-
lation, along with enough “old” data already in memory to completely fill the correlation window. The Tap Memory is
a circular buffer which contains a correlation window’s worth of data. As each new value is added to Tap Memory
for a particular channel, a correlation operation needs to be run and completed before the next new value is added
to memory for that channel. New data can be written into Tap Memory for channels other than the one the Correla-
tor is operating on, however it is the user’s responsibility to insure that a correlation operation is done for a particu-
lar channel before new data is written into memory for that same channel. This is easy to do for a large number of
channels where new data is written to channels in a round-robin sequence, or if the Correlator throughput is not
stressed to its limit (i.e. unused cycles appear between correlations), but the problem can be difficult to manage for
small numbers of channels. The Correlator IP core will automatically prevent new data being written into Tap Mem-
ory and corrupting a correlation as long as the input FIFO depth (parameter 9) is set to 1.

Figures 2 and 3 show the timing of the user interface. The state machine accepts one new data value from the user
interface at a time. When the state machine is ready to accept a new input data word from the user interface it
asserts the

crdy

 signal. The user interface then inputs

din

,

chan_in

,

code_sel_in

,

block_start_in

, and
asserts the

irdy

 signal. When the state machine sees

irdy

 go active, it will take the new data value from the user
interface. If the design has been configured for multiple channels, the state machine reads the pointer for that chan-
nel from the Channel Memory. This pointer value tells the state machine where in Tap Memory to write the data
value just received from the user interface. This pointer value will also be the starting point for the next correlation
operation, so this pointer value is stored in the Input FIFO until the next correlation operation is ready to start. Once
the present correlation operation finishes, or if no correlation operation was in progress when a new data value was
received, then the Input FIFO is read to determine the starting pointer for the next correlation. The state machine
begins reading the Tap and Coefficient Memories at the starting pointer location, and it reads until it has read an
entire correlation window’s worth of data and coefficients.

Figure 2 shows at time 173.5µs that

crdy

 went active. The user provided a value of 0x3 for channel 0, and set the

code_sel_in

 to 1 which indicates which coefficient sequence is to be used for the correlation of channel 0 data.

Lattice Semiconductor Correlator IP Core

4

In this example, two channels and two different coefficient sequences have been configured. Each channel can be
correlated to either of the two coefficient sequences.

Figure 2. User Interface Timing Diagram for Two-channel Correlator

Figure 3. User Interface Timing Diagram for Two-channel Correlator

The user drives the

irdy

 signal high for one clock cycle indicating that the input values are valid. Along with the
input data, the user also sets the

block_start_in

 signal. This signal will be taken as a marker by the Correlator
and aligned with the input data as it passes through the Correlator IP core. The next time the

block_start_out

signal is set and

chan_out

 = 0, it will indicate that the output data was associated with this input data value. The

block_start

 signals act as markers for the user to do frame alignments between the input and outputs of the
Correlator IP core. This is necessary since the core operates on one input data sample at a time. It does not per-
form multiple correlations over “num_lag” values as expressed in Equation 1. This allows the simplest and most
versatile Correlator IP core design. If it is necessary to operate for multiple “lags,” then the user application will
need to add input and output FIFOs around the core to feed data values one sample at time.

At time 178.5µs,

crdy

 again goes active indicating that the Correlator IP core is ready to accept the next input
value, and in the example of Figure 2 the user inputs data for channel 1. At time 196.5µs, the correlation result for
channel 0 is ready at the

dout

 outputs, and the core outputs a value of 0x9 on

dout

, sets the

chan_out

 to 0, and
asserts the

ordy

 signal. It also asserts the

block_start_out

 signal to indicate that this output value was asso-
ciated with the

din

 value from time 175.5µs.

Lattice Semiconductor Correlator IP Core

5

Figure 4. Tap and Coefficient Memories

Tap and Coefficient Memories

While the Tap and Coefficient Memories are being read, the values read are passed to the Aligner. Under the con-
trol of the state machine the Aligner shifts the tap data and coefficients to be passed to the Correlator block. The
state machine also generates strobe signals to the Aligner which indicate, in any given clock cycle, which tap and
coefficient values are valid for the correlator block to work on.

The Tap and Coefficient Memories are implemented with EBR blocks as shown in Figure 4. The Correlator IP core
will automatically configure and instantiate the proper number of EBR blocks in the design based on the parame-
ters selected by the user. In the case of the Tap Memory, the number of correlator cells, number of taps, number of
channels, and the oversampling rate all determine how many EBR memories are needed. The number of correlator
cells (parameter MWIDTH) determines how many words of data can be operated on during a single clock cycle.
The more correlator cells which are configured, the more multiplication operations can occur in a clock cycle and
the overall data throughput goes up. At least one EBR memory is required to feed each correlator cell. All Tap
Memory EBR blocks in the design will be configured to be at least the word width of the input data (DWIDTH) wide.
The EBR blocks can be sized 1, 2, 4, or 9 bits wide, and must be equal to or greater than DWIDTH. Since each
EBR block can store 8192 bits, if the value of [TAP_EBR_WIDTH * (NUM_TAP / MWIDTH) * NUM_CHAN *
OS_FACTOR] exceeds 8192 bits, then multiple EBR blocks will be stacked in columns to feed the correlator cells,
as shown in Figure 4. TAP_EBR_WIDTH is the minimum allowed EBR width which is at least DWIDTH wide. The
Tap Memory EBRs will be configured automatically for the user; however, the user is responsible for determining
the total number of EBR blocks needed for the design and insure that the target LatticeEC™ device contains
enough memories.

The Coefficient Memories are also implemented in EBR blocks. Since each coefficient is constrained to be 1 bit,
the total amount of memory required for coefficients is generally less than that required for tap data. Each EBR

EBR Block

EBR Block
E

B
R

 B
lo

ck

Tap Memory

Aligner

Coefficient Memory

Corr
Cell

Corr
Cell

Corr
Cell

Corr
Cell

Number of Correlator
Cells = MWIDTH

Number of Data Words (Taps)
per Row of Memory = MWIDTH

Number of Coefficients
per Row of Memory = MWIDTH

Correlator

E
B

R
 B

lo
ck

E
B

R
 B

lo
ck

E
B

R
 B

lo
ck

E
B

R
 B

lo
ck

E
B

R
 B

lo
ck

E
B

R
 B

lo
ck

E
B

R
 B

lo
ck

E
B

R
 B

lo
ck

E
B

R
 B

lo
ck

E
B

R
 B

lo
ck

E
B

R
 B

lo
ck

Lattice Semiconductor Correlator IP Core

6

block can be a maximum of 36 bits wide, therefore if the number of correlator cells (MWIDTH) is not greater than
36, only one column of EBR memories is required for the Coefficient Memories. If MWIDTH > 36, then multiple col-
umns will be configured. As in the case of the Tap Memories, if the total number of coefficients which needs to be
stored exceeds one row of EBR memories, then multiple rows will be configured in a stacked arrangement as
shown in Figure 4. For MWIDTH

≤

 36, the number of coefficients required is [NUM_TAP * NUM_COEF_SEQ]. If
this number is less than 8192 then only one EBR is needed for the Coefficient Memory.

Unlike the Tap Memories which are written with new user data under the control of the state machine, the Coeffi-
cient Memories must be written with the coefficient sequences before any correlation operations can be done. This
is done via the Coefficient Memory Configuration interface shown in Figure 5. This interface consists of the input
signals:

coeffaddr

,

coeffwdat

,

coeffwdat_im

, and

coeffwr

. Figure 6 shows the timing for this interface for
a two-channel design with MWIDTH=4, NUM_TAP=16 and NUM_COEF_SEQ=2.

Figure 5. Coefficient Memory Configuration Interface Timing

In this case, the Coefficient Memory is implemented in one EBR block. Each row of Coefficient Memory is required
to store MWIDTH=4 coefficients, so each write to the memory writes four bits. Each coefficient sequence is
NUM_TAP=16 bits long, and it will occupy (NUM_TAP / MWIDTH)= 4 rows in the Coefficient Memory. In addition, in
this example there are two separate coefficient sequences, so the coefficients will occupy a total of eight rows in
the Coefficient Memory.

Writes to the Coefficient Memory are enabled by asserting the

coeffwr

 input. The

coeffaddr

 input selects the
row of memory to be written, and

coeffwdat

 (and

coeffwdat_im

 for complex correlations) is set to the desired
value. This is a very simple interface, however it is essential to make sure that the coefficient sequence is written in
the correct order. In the example above, the first four values written are for coefficient sequence 0. The values writ-
ten are 0xa6fc (or in binary: 1010 0110 1111 1100) with the LSB being the first bit in the correlation sequence. This
bit will be multiplied against the newest data value received by the Correlator. The MSB in this string will be multi-
plied against the oldest data read from Tap Memory. This is explained further in the Correlator Evaluation Package
section of this document.

The second coefficient sequence written into the Coefficient Memory is 0x0180, and is written into rows 7, 6, 5 and
4. This will be selected as coefficient sequence 1 by setting the

code_sel_in

 to 1 when a data value is input to
the Correlator. Figure 6 shows how the coefficient values from this example would appear in the Coefficient Mem-
ory:

Lattice Semiconductor Correlator IP Core

7

Figure 6. Example Coefficient Sequences Written in Coefficient Memory

In configurations where the number of taps is not a power of 2, the coefficient sequences will need to be padded
with zeros so that all coefficient sequences written to the Coefficient Memory are a power of 2 long. This is
because the Coefficient and Tap Memories must be divided up evenly into sections representing the individual
channels and coefficient sequences. In the example above, if the number of taps were less than 16, the coefficients
would still be written into memory the same way except that padding zeros would be added before the MSB. The
padding zeros would be written into memory starting at the MSB of row 3 for coefficient sequence 0.

Correlator and Adder/Accumulator Blocks
The Correlator block performs the multiplication operations in Equations 1 and 2. The coefficients are configured by
the user to be either unsigned or signed. If unsigned, then the binary coefficient values simply represent {1,0} and
the multiplications reduce to either passing the tap values read from memory to the Adder/Accumulator, or passing
a zero value. If the coefficients are signed, then the binary coefficients {1,0} represent values of {+1,-1}. If a tap
value is multiplied by 1, then the Correlator block does nothing other than pass the tap value read from memory to
the Adder/Accumulator. If a tap value is multiplied by -1, then the Correlator block does a two’s complement conver-
sion of the tap value read from memory and passes the result to the Adder/Accumulator, which in turn completes
the summation of the correlation sequence to generate the final result.

Decimation
The Correlator IP core allows the input data to be oversampled from two to eight times the normal sampling rate.
The OS_FACTOR parameter should be set to the correct oversampling rate. When this is done, the core will auto-
matically decimate the amount of data which is included in the correlation operations by the correct amount. For
example, if the number of taps is eight and an oversampling rate of two is chosen, then the circuit will correlate the
eight coefficient values with the newest input tap data value and the odd numbered tap data values from the past
15 “old” data values. The correlation will look like this:

r = d1c1 + d3c2 + d5c3 + d7c4 + d9c5 + d11c6 + d13c7 + d15c8 (4)

The number of data values stored in Tap Memory for a given channel becomes [OS_FACTOR*NUM_TAP], or in
this case 16. The number of coefficients per channel is still equal to NUM_TAP.

0 0 0 0

1 0 1 0

0 1 1 0

1 1 1 1

1 0 0 0

0 0 0 1

0 0 0 0

1 1 0 0Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Coefficient
Sequence 1

Coefficient
Sequence 0

Upper Locations
of EBR (Unused
in this Example)

MWIDTH wide

Lattice Semiconductor Correlator IP Core

8

Parameter Descriptions
The parameters used for configuring the Correlator IP core are listed below. The values of these parameters must
be set prior to synthesis or functional verification.

Table 1. User Configurable Parameters

The basic configuration parameters should be selected based on the type of correlation desired. These include
parameters 1, 2, 4, 5, 6, 7 and 10. The remaining parameters 3, 8 and 9 are selected based on the desired perfor-
mance of the circuit.

For parameter 3, a higher fMAX can be achieved by generating a much smaller circuit (smaller number of correlator
cells). However, for long data sequences (number of taps, or “corr_win”), this will mean that many clock cycles are
needed for each correlation result to be calculated resulting in very poor overall data throughput and long latency
times. For higher data throughput, and at the expense of a larger and therefore more complicated circuit, a higher
number of correlators should be chosen. The Correlator IP core is architected to be highly pipelined, so even for
large numbers of correlator cells, the penalty in fMAX is small; however, as the design becomes more complicated, it
will eventually reach a point where the fMAX is impacted by routing in the FPGA.

Parameter 8 should be set to 1 for the highest performance circuit. A value of 2 or 3 will result in a smaller, but sig-
nificantly lower performance design.

Parameter 9 sets the depth of the input FIFO. This improves throughput performance by allowing the next input
data sample to be presented to the device while the present correlation result is being calculated. However, care
must be used when changing this parameter. If the FIFO depth is set above 1, then the user must insure that a new
data sample will not be presented to the Correlator IP core for the same channel as is presently being serviced or
the new data sample will be written into the core’s internal tap memory and will corrupt the correlation which is
already in progress for that channel. If the core has been configured for multiple channels, and input data values for
the same channel are never presented to the core adjacent to each other in time, then the FIFO depth can be
safely increased beyond 1. For example, if the core is configured for eight channels, and data for each of the eight
channels is always presented in sequence, then the FIFO depth may be increased to 2 or 3. However, if the core is
configured for one or two channels, or the input data sequences through channels at random, then the FIFO depth
should never be increased beyond 1.

Parameter
Number Parameter

Parameter
Description Input Range

Default
Input Value

Parameter
Values

1 DWIDTH Input data width 1-8 4 —

2 NUM_TAP Number of taps 8-2048 16 —

3 MWIDTH Number of correlator cells

Minimum = 1
Maximum = the number of
EBR blocks in the target
LatticeEC device

4 —

4 NUM_CHAN Number of channels 1-256 2 —

5 DTYPE Input data type Signed, unsigned Unsigned “UNSIGNED”
“SIGNED”

6 COMPLEX Correlation type Real, complex Real Real = 0
Complex = 1

7 OS_FACTOR Oversampling rate 1-8 1 —

8 PERFORMANCE Performance 1, 2, 3 1 —

9 FIFO_DEPTH Input FIFO depth 1, 2, 3 1 —

10 NUM_COEF_SEQ Number of coefficient
sequences 1-256 NUM_CHAN —

Lattice Semiconductor Correlator IP Core

9

Custom Core Configurations
For core configurations that are not available in the Evaluation Packages, please contact your Lattice sales repre-
sentative to request a custom configuration.

Related Information
For more information regarding core usage and design verification, refer to the Parallel RapidIO Physical Layer
Interface IP Core User’s Guide, available on the Lattice web site at www.latticesemi.com.

Lattice Semiconductor Correlator IP Core

10

Appendix for LatticeECP™ and LatticeEC™ Devices
Table 2. Performance and Resource Utilization1

Supplied Netlist Configurations
The Ordering Part Number (OPN) for the Correlator IP Core on LatticeECP/EC devices is CORR-8BIT-E2-N1 (for
all configurations of the netlist package). Table 3 lists the evaluation netlists that can be downloaded from the Lat-
tice web site at www.latticesemi.com. To load the preset parameters for this core, click on the “Load Parameters”
button inside the IP Manager tool. Make sure that you are looking for a file inside this core's directory location. The
Lattice Parameter Configuration files (.lpc) are located inside this directory.

Table 3. Parameter Settings of the Evaluation Packages

Parameter
Filename

Parameter
Settings SLICEs LUTs Registers

External
Pins

sysMEM™
EBRs fMAX

Corr_8bit_e2_1_001.lpc See Table 3 212 140 310 41 5 212.54 MHz

1. Performance and utilization characteristics are generated using LFEC20E-5F672C in Lattice's ispLEVER® 4.2 software. When using this
IP core in a different density, speed, or grade within the Lattice ECP/EC family, performance may vary.

Input Data
Width

of
Taps

of
Correlators

of
Channels

Input
Data Type

Correlation
Type

Over-sampling
Rate Performance

Input
FIFO
Depth

of
Coefficient
Sequences

4 16 4 2 Unsigned Real 1 1 1 2

	Features
	Introduction
	General Description
	Functional Description
	Correlator Input and Output Data
	Tap and Coefficient Memories
	Correlator and Adder/Accumulator Blocks
	Decimation

	Parameter Descriptions
	Custom Core Configurations
	Related Information
	Appendix for LatticeECP™ and LatticeEC™ Devices
	Supplied Netlist Configurations

